mongodb学习
完整内容请见https://www.runoob.com/mongodb/mongodb-replication.html
1基本概念
1.1文档
文档是bson
需要注意的是:
文档中的键/值对是有序的。
文档中的值不仅可以是在双引号里面的字符串,还可以是其他几种数据类型(甚至可以是整个嵌入的文档)。
MongoDB区分类型和大小写。
MongoDB的文档不能有重复的键。
文档的键是字符串。除了少数例外情况,键可以使用任意UTF-8字符。
文档键命名规范:
键不能含有\0 (空字符)。这个字符用来表示键的结尾。
.和$有特别的意义,只有在特定环境下才能使用。
以下划线"_"开头的键是保留的(不是严格要求的)。
1.2集合
集合就是 MongoDB 文档组
capped collections
Capped collections 就是固定大小的collection。
它有很高的性能以及队列过期的特性(过期按照插入的顺序). 有点和 "RRD" 概念类似。
Capped collections 是高性能自动的维护对象的插入顺序。它非常适合类似记录日志的功能和标准的 collection 不同,你必须要显式的创建一个capped collection,指定一个 collection 的大小,单位是字节。collection 的数据存储空间值提前分配的。
Capped collections 可以按照文档的插入顺序保存到集合中,而且这些文档在磁盘上存放位置也是按照插入顺序来保存的,所以当我们更新Capped collections 中文档的时候,更新后的文档不可以超过之前文档的大小,这样话就可以确保所有文档在磁盘上的位置一直保持不变。
由于 Capped collection 是按照文档的插入顺序而不是使用索引确定插入位置,这样的话可以提高增添数据的效率。MongoDB 的操作日志文件 oplog.rs 就是利用 Capped Collection 来实现的。
要注意的是指定的存储大小包含了数据库的头信息。
db.createCollection("mycoll", {capped:true, size:100000})
在 capped collection 中,你能添加新的对象。
能进行更新,然而,对象不会增加存储空间。如果增加,更新就会失败 。
使用 Capped Collection 不能删除一个文档,可以使用 drop() 方法删除 collection 所有的行。
删除之后,你必须显式的重新创建这个 collection。
在32bit机器中,capped collection 最大存储为1e9个字节。
1.3元数据
数据库的信息是存储在集合中。它们使用了系统的命名空间:
dbname.system.*
说明
| 集合命名空间 | 描述 | | ———————— | —————————————– | | dbname.system.namespaces | 列出所有名字空间。 | | dbname.system.indexes | 列出所有索引。 | | dbname.system.indexes | 列出所有索引。 | | dbname.system.profile | 包含数据库概要(profile)信息。 | | dbname.system.users | 列出所有可访问数据库的用户。 | | dbname.local.sources | 包含复制对端(slave)的服务器信息和状态。 |
是可修改的。 是可删除的。
数据类型
| 数据类型 | 描述 | | —————— | ———————————————————— | | String | 字符串。存储数据常用的数据类型。在 MongoDB 中,UTF-8 编码的字符串才是合法的。 | | Integer | 整型数值。用于存储数值。根据你所采用的服务器,可分为 32 位或 64 位。 | | Boolean | 布尔值。用于存储布尔值(真/假)。 | | Double | 双精度浮点值。用于存储浮点值。 | | Min/Max keys | 将一个值与 BSON(二进制的 JSON)元素的最低值和最高值相对比。 | | Arrays | 用于将数组或列表或多个值存储为一个键。 | | Timestamp | 时间戳。记录文档修改或添加的具体时间。 | | Object | 用于内嵌文档。 | | Null | 用于创建空值。 | | Symbol | 符号。该数据类型基本上等同于字符串类型,但不同的是,它一般用于采用特殊符号类型的语言。 | | Date | 日期时间。用 UNIX 时间格式来存储当前日期或时间。你可以指定自己的日期时间:创建 Date 对象,传入年月日信息。 | | Object ID | 对象 ID。用于创建文档的 ID。 | | Binary Data | 二进制数据。用于存储二进制数据。 | | Code | 代码类型。用于在文档中存储 JavaScript 代码。 | | Regular expression | 正则表达式类型。用于存储正则表达式。 |
2.基本操作
创建集合
db.createCollection(name, options)
参数说明:
name: 要创建的集合名称
options: 可选参数, 指定有关内存大小及索引的选项
options 可以是如下参数: | 字段 | 类型 | 描述 | | ———– | —- | ———————————————————— | | capped | 布尔 | (可选)如果为 true,则创建固定集合。固定集合是指有着固定大小的集合,当达到最大值时,它会自动覆盖最早的文档。当该值为 true 时,必须指定 size 参数。 | | autoIndexId | 布尔 | (可选)如为 true,自动在 _id 字段创建索引。默认为 false。 | | size | 数值 | (可选)为固定集合指定一个最大值(以字节计)。如果 capped 为 true,也需要指定该字段。 | | max | 数值 | (可选)指定固定集合中包含文档的最大数量。 |
在插入文档时,MongoDB 首先检查固定集合的 size 字段,然后检查 max 字段。
删除集合
db.collection.drop()
参数说明:
无
返回值
如果成功删除选定集合,则 drop() 方法返回 true,否则返回 false。
插入文档
MongoDB 使用 insert() 或 save() 方法向集合中插入文档,语法如下:
db.COLLECTION_NAME.insert(document)
3.2 版本后还有以下几种语法可用于插入文档:
db.collection.insertOne():向指定集合中插入一条文档数据
db.collection.insertMany():向指定集合中插入多条文档数据
# 插入单条数据
> var document = db.collection.insertOne({"a": 3})
> document
{
"acknowledged" : true,
"insertedId" : ObjectId("571a218011a82a1d94c02333")
}
# 插入多条数据
> var res = db.collection.insertMany([{"b": 3}, {'c': 4}])
> res
{
"acknowledged" : true,
"insertedIds" : [
ObjectId("571a22a911a82a1d94c02337"),
ObjectId("571a22a911a82a1d94c02338")
]
}
更新文档
update() 方法用于更新已存在的文档。语法格式如下:
db.collection.update(
<query>,
<update>,
{
upsert: <boolean>,
multi: <boolean>,
writeConcern: <document>
}
)
参数说明:
query : update的查询条件,类似sql update查询内where后面的。
update : update的对象和一些更新的操作符(如$,$inc...)等,也可以理解为sql update查询内set后面的
upsert : 可选,这个参数的意思是,如果不存在update的记录,是否插入objNew,true为插入,默认是false,不插入。
multi : 可选,mongodb 默认是false,只更新找到的第一条记录,如果这个参数为true,就把按条件查出来多条记录全部更新。
writeConcern :可选,抛出异常的级别。
save() 方法通过传入的文档来替换已有文档。语法格式如下:
db.collection.save(
<document>,
{
writeConcern: <document>
}
)
参数说明:
document : 文档数据。
writeConcern :可选,抛出异常的级别。
删除文档
remove() 方法的基本语法格式如下所示:
db.collection.remove(
<query>,
<justOne>
)
如果你的 MongoDB 是 2.6 版本以后的,语法格式如下:
db.collection.remove(
<query>,
{
justOne: <boolean>,
writeConcern: <document>
}
)
参数说明:
query :(可选)删除的文档的条件。
justOne : (可选)如果设为 true 或 1,则只删除一个文档,如果不设置该参数,或使用默认值 false,则删除所有匹配条件的文档。
writeConcern :(可选)抛出异常的级别。
查询文档
db.collection.find(query, projection)
query :可选,使用查询操作符指定查询条件
projection :可选,使用投影操作符指定返回的键。查询时返回文档中所有键值, 只需省略该参数即可(默认省略)。
如果你需要以易读的方式来读取数据,可以使用 pretty() 方法,语法格式如下:
>db.col.find().pretty()
pretty() 方法以格式化的方式来显示所有文档。
MongoDB 的 find() 方法可以传入多个键(key),每个键(key)以逗号隔开,即常规 SQL 的 AND 条件。
语法格式如下:
>db.col.find({key1:value1, key2:value2}).pretty()
MongoDB OR 条件语句使用了关键字 $or,语法格式如下:
>db.col.find(
{
$or: [
{key1: value1}, {key2:value2}
]
}
).pretty()
AND 和 OR 联合使用
以下实例演示了 AND 和 OR 联合使用,类似常规 SQL 语句为: 'where likes>50 AND (by = '菜鸟教程' OR title = 'MongoDB 教程')'
>db.col.find({"likes": {$gt:50}, $or: [{"by": "菜鸟教程"},{"title": "MongoDB 教程"}]}).pretty()
{
"_id" : ObjectId("56063f17ade2f21f36b03133"),
"title" : "MongoDB 教程",
"description" : "MongoDB 是一个 Nosql 数据库",
"by" : "菜鸟教程",
"url" : "http://www.runoob.com",
"tags" : [
"mongodb",
"database",
"NoSQL"
],
"likes" : 100
}
操作符
条件操作符
MongoDB中条件操作符有:
$gt -------- greater than >
$gte --------- gt equal >=
$lt -------- less than <
$lte --------- lt equal <=
$ne ----------- not equal !=
$eq -------- equal =
例子
如果你想获取"col"集合中 "likes" 大于100,小于 200 的数据,你可以使用以下命令:
db.col.find({likes : {$lt :200, $gt : 100}})
类似于SQL语句:
Select * from col where likes>100 AND likes<200;
$type操作符
$type操作符是基于BSON类型来检索集合中匹配的数据类型,并返回结果。
MongoDB 中可以使用的类型如下表所示:
类型 | 数字 | 备注 |
---|---|---|
Double | 1 | |
String | 2 | |
Object | 3 | |
Array | 4 | |
Binary data | 5 | |
Undefined | 6 | 已废弃。 |
Object id | 7 | |
Boolean | 8 | |
Date | 9 | |
Null | 10 | |
Regular Expression | 11 | |
JavaScript | 13 | |
Symbol | 14 | |
JavaScript (with scope) | 15 | |
32-bit integer | 16 | |
Timestamp | 17 | |
64-bit integer | 18 | |
Min key | 255 | Query with -1. |
Max key | 127 |
如果想获取 "col" 集合中 title 为 String 的数据,你可以使用以下命令:
db.col.find({"title" : {$type : 2}})
或
db.col.find({"title" : {$type : 'string'}})
Limit和Skip方法
如果你需要在MongoDB中读取指定数量的数据记录,可以使用MongoDB的Limit方法,limit()方法接受一个数字参数,该参数指定从MongoDB中读取的记录条数。
语法
limit()方法基本语法如下所示:
>db.COLLECTION_NAME.find().limit(NUMBER)
我们除了可以使用limit()方法来读取指定数量的数据外,还可以使用skip()方法来跳过指定数量的数据,skip方法同样接受一个数字参数作为跳过的记录条数。
语法
skip() 方法脚本语法格式如下:
>db.COLLECTION_NAME.find().limit(NUMBER).skip(NUMBER)
排序
在 MongoDB 中使用 sort() 方法对数据进行排序,sort() 方法可以通过参数指定排序的字段,并使用 1 和 -1 来指定排序的方式,其中 1 为升序排列,而 -1 是用于降序排列。
语法
sort()方法基本语法如下所示:
>db.COLLECTION_NAME.find().sort({KEY:1})
以下实例演示了 col 集合中的数据按字段 likes 的降序排列:
>db.col.find({},{"title":1,_id:0}).sort({"likes":-1})
索引
createIndex() 方法
MongoDB使用 createIndex() 方法来创建索引。
注意在 3.0.0 版本前创建索引方法为 db.collection.ensureIndex(),之后的版本使用了 db.collection.createIndex() 方法,ensureIndex() 还能用,但只是 createIndex() 的别名。
语法
createIndex()方法基本语法格式如下所示:
>db.collection.createIndex(keys, options)
语法中 Key 值为你要创建的索引字段,1 为指定按升序创建索引,如果你想按降序来创建索引指定为 -1 即可。
实例
>db.col.createIndex({"title":1})
createIndex() 方法中你也可以设置使用多个字段创建索引(关系型数据库中称作复合索引)。
>db.col.createIndex({"title":1,"description":-1})
createIndex() 接收可选参数,可选参数列表如下:
Parameter | Type | Description |
---|---|---|
background | Boolean | 建索引过程会阻塞其它数据库操作,background可指定以后台方式创建索引,即增加 “background” 可选参数。 “background” 默认值为false。 |
unique | Boolean | 建立的索引是否唯一。指定为true创建唯一索引。默认值为false. |
name | string | 索引的名称。如果未指定,MongoDB的通过连接索引的字段名和排序顺序生成一个索引名称。 |
dropDups | Boolean | 3.0+版本已废弃。在建立唯一索引时是否删除重复记录,指定 true 创建唯一索引。默认值为 false. |
sparse | Boolean | 对文档中不存在的字段数据不启用索引;这个参数需要特别注意,如果设置为true的话,在索引字段中不会查询出不包含对应字段的文档.。默认值为 false. |
expireAfterSeconds | integer | 指定一个以秒为单位的数值,完成 TTL设定,设定集合的生存时间。 |
v | index version | 索引的版本号。默认的索引版本取决于mongod创建索引时运行的版本。 |
weights | document | 索引权重值,数值在 1 到 99,999 之间,表示该索引相对于其他索引字段的得分权重。 |
default_language | string | 对于文本索引,该参数决定了停用词及词干和词器的规则的列表。 默认为英语 |
language_override | string | 对于文本索引,该参数指定了包含在文档中的字段名,语言覆盖默认的language,默认值为 language. |
1、查看集合索引
db.col.getIndexes()
2、查看集合索引大小
db.col.totalIndexSize()
3、删除集合所有索引
db.col.dropIndexes()
4、删除集合指定索引
db.col.dropIndex("索引名称")
实例
在后台创建索引:
db.values.createIndex({open: 1, close: 1}, {background: true})
聚合
MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。有点类似sql语句中的 count(*)。
aggregate() 方法
MongoDB中聚合的方法使用aggregate()。
语法
aggregate() 方法的基本语法格式如下所示:
>db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION)
例子
> db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : 1}}}])
以上实例类似sql语句:
select by_user, count(*) from mycol group by by_user
在上面的例子中,我们通过字段 by_user 字段对数据进行分组,并计算 by_user 字段相同值的总和。
下表展示了一些聚合的表达式:
表达式 | 描述 | 实例 |
---|---|---|
$sum | 计算总和。 | db.mycol.aggregate([{$group : {_id : “$by_user”, num_tutorial : {$sum : “$likes”}}}]) |
$avg | 计算平均值 | db.mycol.aggregate([{$group : {_id : “$by_user”, num_tutorial : {$avg : “$likes”}}}]) |
$min | 获取集合中所有文档对应值得最小值。 | db.mycol.aggregate([{$group : {_id : “$by_user”, num_tutorial : {$min : “$likes”}}}]) |
$max | 获取集合中所有文档对应值得最大值。 | db.mycol.aggregate([{$group : {_id : “$by_user”, num_tutorial : {$max : “$likes”}}}]) |
$push | 在结果文档中插入值到一个数组中。 | db.mycol.aggregate([{$group : {_id : “$by_user”, url : {$push: “$url”}}}]) |
$addToSet | 在结果文档中插入值到一个数组中,但不创建副本。 | db.mycol.aggregate([{$group : {_id : “$by_user”, url : {$addToSet : “$url”}}}]) |
$first | 根据资源文档的排序获取第一个文档数据。 | db.mycol.aggregate([{$group : {_id : “$by_user”, first_url : {$first : “$url”}}}]) |
$last | 根据资源文档的排序获取最后一个文档数据 | db.mycol.aggregate([{$group : {_id : “$by_user”, last_url : {$last : “$url”}}}]) |
管道在Unix和Linux中一般用于将当前命令的输出结果作为下一个命令的参数。
MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理。管道操作是可以重复的。
表达式:处理输入文档并输出。表达式是无状态的,只能用于计算当前聚合管道的文档,不能处理其它的文档。
这里我们介绍一下聚合框架中常用的几个操作:
$project:修改输入文档的结构。可以用来重命名、增加或删除域,也可以用于创建计算结果以及嵌套文档。
$match:用于过滤数据,只输出符合条件的文档。$match使用MongoDB的标准查询操作。
$limit:用来限制MongoDB聚合管道返回的文档数。
$skip:在聚合管道中跳过指定数量的文档,并返回余下的文档。
$unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值。
$group:将集合中的文档分组,可用于统计结果。
$sort:将输入文档排序后输出。
$geoNear:输出接近某一地理位置的有序文档。
管道操作符实例
1、$project实例
db.article.aggregate(
{ $project : {
title : 1 ,
author : 1 ,
}}
);
这样的话结果中就只还有_id,tilte和author三个字段了,默认情况下_id字段是被包含的,如果要想不包含_id话可以这样:
db.article.aggregate(
{ $project : {
_id : 0 ,
title : 1 ,
author : 1
}});
2.$match实例
db.articles.aggregate( [
{ $match : { score : { $gt : 70, $lte : 90 } } },
{ $group: { _id: null, count: { $sum: 1 } } }
] );
$match用于获取分数大于70小于或等于90记录,然后将符合条件的记录送到下一阶段$group管道操作符进行处理。
3.$skip实例
db.article.aggregate(
{ $skip : 5 });
经过$skip管道操作符处理后,前五个文档被"过滤"掉。
MongoDB 复制(副本集)
MongoDB复制是将数据同步在多个服务器的过程。
复制提供了数据的冗余备份,并在多个服务器上存储数据副本,提高了数据的可用性, 并可以保证数据的安全性。
复制还允许您从硬件故障和服务中断中恢复数据。
MongoDB复制原理
mongodb的复制至少需要两个节点。其中一个是主节点,负责处理客户端请求,其余的都是从节点,负责复制主节点上的数据。
mongodb各个节点常见的搭配方式为:一主一从、一主多从。
主节点记录在其上的所有操作oplog,从节点定期轮询主节点获取这些操作,然后对自己的数据副本执行这些操作,从而保证从节点的数据与主节点一致。
客户端从主节点读取数据,在客户端写入数据到主节点时, 主节点与从节点进行数据交互保障数据的一致性。
副本集特征:
N 个节点的集群
任何节点可作为主节点
所有写入操作都在主节点上
自动故障转移
自动恢复
MongoDB 分片
在Mongodb里面存在另一种集群,就是分片技术,可以满足MongoDB数据量大量增长的需求。
当MongoDB存储海量的数据时,一台机器可能不足以存储数据,也可能不足以提供可接受的读写吞吐量。这时,我们就可以通过在多台机器上分割数据,使得数据库系统能存储和处理更多的数据。
为什么使用分片
复制所有的写入操作到主节点
延迟的敏感数据会在主节点查询
单个副本集限制在12个节点
当请求量巨大时会出现内存不足。
本地磁盘不足
垂直扩展价格昂贵
MongoDB 备份(mongodump)与恢复(mongorestore)
在Mongodb中我们使用mongodump命令来备份MongoDB数据。该命令可以导出所有数据到指定目录中。
mongodump命令可以通过参数指定导出的数据量级转存的服务器。
语法
mongodump命令脚本语法如下:
>mongodump -h dbhost -d dbname -o dbdirectory
-h:MongDB所在服务器地址,例如:127.0.0.1,当然也可以指定端口号:127.0.0.1:27017
-d:需要备份的数据库实例,例如:test
-o:备份的数据存放位置,例如:c:\data\dump,当然该目录需要提前建立,在备份完成后,系统自动在dump目录下建立一个test目录,这个目录里面存放该数据库实例的备份数据。
实例
在本地使用 27017 启动你的mongod服务。打开命令提示符窗口,进入MongoDB安装目录的bin目录输入命令mongodump:
>mongodump
MongoDB 监控
mongostat是mongodb自带的状态检测工具,在命令行下使用。它会间隔固定时间获取mongodb的当前运行状态,并输出。如果你发现数据库突然变慢或者有其他问题的话,你第一手的操作就考虑采用mongostat来查看mongo的状态。
启动你的Mongod服务,进入到你安装的MongoDB目录下的bin目录, 然后输入mongostat命令,如下所示:
D:\set up\mongodb\bin>mongostat
mongotop也是mongodb下的一个内置工具,mongotop提供了一个方法,用来跟踪一个MongoDB的实例,查看哪些大量的时间花费在读取和写入数据。 mongotop提供每个集合的水平的统计数据。默认情况下,mongotop返回值的每一秒。
启动你的Mongod服务,进入到你安装的MongoDB目录下的bin目录, 然后输入mongotop命令,如下所示:
D:\set up\mongodb\bin>mongotop
Objectid
ObjectId 是一个12字节 BSON 类型数据,有以下格式:
-
前4个字节表示时间戳(秒级)
-
接下来的3个字节是机器标识码
-
紧接的两个字节由进程id组成(PID)
-
最后三个字节是随机数。
所以通过前四个字段就能知道某条数据创建时间,下面是一个例子
ObjectId:5eb8a9ce650936b9d5e09a1f
前四个字节:5eb8a9ce
转为10进制:1589160398
转为时间:2020/5/11 9:26:38
高级特性
详情请见原文